首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3553篇
  免费   97篇
  国内免费   62篇
工业技术   3712篇
  2024年   4篇
  2023年   30篇
  2022年   72篇
  2021年   49篇
  2020年   67篇
  2019年   68篇
  2018年   72篇
  2017年   73篇
  2016年   83篇
  2015年   93篇
  2014年   148篇
  2013年   260篇
  2012年   153篇
  2011年   264篇
  2010年   161篇
  2009年   203篇
  2008年   169篇
  2007年   168篇
  2006年   181篇
  2005年   163篇
  2004年   126篇
  2003年   140篇
  2002年   115篇
  2001年   117篇
  2000年   96篇
  1999年   83篇
  1998年   102篇
  1997年   77篇
  1996年   93篇
  1995年   105篇
  1994年   84篇
  1993年   21篇
  1992年   10篇
  1991年   12篇
  1990年   10篇
  1989年   11篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1973年   1篇
排序方式: 共有3712条查询结果,搜索用时 31 毫秒
1.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
2.
南水北调中线总干渠无在线调蓄水库,对藻类生态调度过程中出现的问题开展生态调度实现策略和实施方式研究。主要实现策略包括:划定自身的调蓄区,隔离生态调度对下游的影响;采用高效的渠池运行方式,减少生态调度时蓄量的反复调整;综合考虑安全、快速、平稳等需求,设定生态调度实施进程和方式。具体实施方式包括:将总干渠划分为流速调控区、调蓄区和正常运行区,分别实施等体积、控制蓄量和闸前常水位方式运行;将生态调度过程划分为充水阶段和泄水阶段,基于流速调控目标值、持续时长和水位降幅约束条件,确定各阶段时长和各分区的闸门群调控方案等。基于2018年3月输水工况,采用明渠一维非恒定流模型,仿真总干渠上游15个渠池的藻类生态调度过程。结果表明,生态调度可在3.5 d内完成,各渠池的平均流速由0.48 m/s增至0.93 m/s,持续时间超过2 h。在整个生态调度过程中,水位变化平稳,水位变幅符合安全阈值要求,下游渠道的正常运行未受生态调度明显影响。  相似文献   
3.
Floating treatment wetlands (FTWs) use plants’ roots for water quality improvement. The plants are supported by a buoyant structure deployed at the water surface. The roots form a porous zone beneath the structure and remove pollutants carried in suspension through filtering, absorption and uptake. This paper used CFD simulation to model FTWs arranged in series and spanning the channel width and to study the effects of root length and spacing between FTWs on flow distribution and mass removal. The root zone was modelled as a porous media, and removal was computed using first-order decay, for which a range of removal constants was tested. Longer roots increased the reactive volume of the root zone, which increased the fraction of pollutant inflow entering the FTWs. Increasing the distance between FTWs allowed greater mixing between water that went through and beneath the upstream FTW. This increased the concentration entering each FTW, which enhanced mass removal per FTW. However, a larger distance between FTWs reduced the number of FTWs in the channel, reducing the reactive volume. In the tradeoff between mixing and reactive volume, the reactive volume was more important, such that total removal in the channel increased with longer roots and more units of FTW (shorter gap distance). However, removing the gap entirely was detrimental, as FTWs in series removed more mass than a continuous FTW of same volume. This study points to two design recommendations for FTWs in series. First, if resources for building FTWs are not limiting, but the channel length is, it is preferable to prioritize higher reactive volume (shorter gap distance) to achieve maximum removal per channel length. Second, if resources for FTWs are limiting, but channel length is not, it is better to place the FTWs with a longer gap distance, preferably along enough to allow mixing over the full depth between FTWs, as this will achieve maximum removal per FTW.  相似文献   
4.
Fluid sloshing usually causes serious safety issues on the dynamic stability and propellant thermal management during the powered-flight phase of launch vehicle. With the wide using of cryogenic propellants, the coupled thermo-mechanical performance during fluid sloshing becomes more prominent. In the present study, one numerical model is established to simulate fluid sloshing by using the VOF method coupled with the mesh motion treatment. The phase change occurring within the tank is considered. Both the experimental validation and mesh sensitivity analysis are made. It shows that present numerical model is acceptable. Based on the developed numerical model, the effect of different super gravity accelerations on fluid sloshing hydrodynamic characteristic is numerically researched. The fluid pressure variation, the sloshing force and sloshing moment, the interface dynamic response and the interface shape variation are investigated, respectively. It shows that the gravity acceleration has caused obvious influences on fluid sloshing characteristic. When the gravity acceleration is higher than 4g0, fluid sloshing becomes more obvious and must be paid enough attention. With some valuable conclusions obtained, the present work is of great significance for in-depth understanding of fluid sloshing mechanism.  相似文献   
5.
A novel mixing principle utilising oscillating liquid columns was analysed numerically with regard to particle dispersion characteristics. For producing fluid oscillations a pipe (diameter 100 mm) was immersed centrally into a vessel (diameter 450 mm) filled with liquid (filling height 700 mm) and periodically pressurised (frequency 1.2 Hz). The outlet geometry of the central pipe, just ending near the vessel bottom, has a strong effect on mixing and was optimised in this study. The principle of a FPR-mixer does not require rotating stirrers and in the turbulent regime it has power numbers comparable to propellers. The numerical calculations were conducted by a Euler/Lagrange approach neglecting two-way coupling as well as inter-particle collisions for clarity in order to only focus on the effect of interfacial forces on particle dispersion. The continuous phase was calculated in an unsteady way based on the Reynolds-averaged equations combined with the k-ω-SST (shear stress transport) turbulence model. Lagrangian tracking was conducted considering all relevant forces; drag, gravity/buoyancy, fluid inertia, added mass, Basset force and transverse lift forces due to shear and particle rotation. The importance of these forces was analysed with respect to the turbulent particle Stokes number (considered range 0.004 < St < 10.0) and particle/liquid density ratio (i.e. 1.05, 1.5 and 2.5). Finally, the significance of Basset force and shear-rotation lift force (i.e. Magnus effect) on the dispersion process was quantified by mixing parameters.  相似文献   
6.
ABSTRACT

The character and cause of sliver defect on IF steel sheet surface are studied by means of SEM, unstable flow in mould could induce surface velocity and level fluctuations, leading to surface defects during continuous casting of steel. The nozzle clogging is a serious problem during the continuous casting of steel, due to its influence on the casting operations and products quality. In this study, the nail dipping method for measuring surface velocity and flow direction in molten steel were employed. The fluid flow in mould of whole casting sequence was investigated, especially during the nozzle clogging conditions. The results showed that when nozzle clogging occurred in the 7th heat, the flow velocities on R and L side of nozzle were 0.280 and 0.402?m/s, respectively. The surface defect ratio of hot-rolled and cold-rolled plates increases with the increase of heat flux deviation on both sides of the mould copper. The different clogging per cent on both sides of the nozzle will lead to asymmetry flow, the surface velocity is higher with the small clogging per cent side compared to that of relatively large per cent clogging side.  相似文献   
7.
The influence of viscoelastic flow properties on fluid dynamics using radial impellers is investigated. The use of transparent model fluids allows for the optical measurement of general flow behavior with a fluorescence dying technique. By varying viscoelastic flow properties, size of agitators and rotational frequency, the impact of these parameters on fluid dynamics is analyzed. Toroidally shaped, cavern‐like flow compartments form around the agitators in all fluids in specific rotational frequency ranges, preventing an efficient mixing. By balancing elastic with centrifugal forces, a simple model is developed with which compartment sizes can be predicted with good accuracy. The results indicate a good suitability of the elasticity number as a scale‐up criterion.  相似文献   
8.
The design of a liquid/liquid contact apparatus necessitates the knowledge of fluid dynamics and mass transfer in the dispersion. Prediction of process parameters is challenging due to swarm and interfacial effects. Single drop investigations are suitable to enable a sophisticated dimensioning based on few simple experiments combined with published theories and correlations. In the first part of this article, the fundamentals of fluid dynamics and mass transfer in absence of interfacial effects were explained. Here, an overview of relevant interfacial phenomena and the influence of different substances typically occurring in technical applications as impurities or accompanying components is given.  相似文献   
9.
Hydrogen, producing electricity in fuel cells, is a versatile energy source, but with risks associated with flammability. Fuel cells use enclosures for protection which need ventilating to remove hydrogen emitted during normal operation or from supply system leaks. Passive ventilation, using buoyancy driven flow is preferred to mechanical systems. Performance depends upon vent design, size, shape, position and number. Vents are usually plain rectangular openings, but environmentally situated enclosures use louvres for protection. The effect of louvres on passive ventilation is not clear and has therefore been examined in this paper. Comparison ‘same opening area’ louvre and plain vent tests were undertaken using a 0.144 m3 enclosure with opposing upper and lower vents and helium leaking from a 4 mm nozzle on the base at rates from 1 to 10 lpm, simulating a hydrogen leak. Louvres increased stratified level helium concentrations by typically in excess of 15%. The empirical data obtained was also used in a validation exercise with a SolidWorks: Flow Simulation CFD model, which provided a good qualitative representation of flow behaviour and close empirical data correlations.  相似文献   
10.
跨渠桥梁是南水北调中线工程的重要基础设施,危化品运输车辆一旦在跨渠桥梁上发生事故,不仅会对桥体结构造成很大损坏,还会对沿线水质产生较大污染。如果能及时发现,提前预警,就可以针对每座桥梁的情况提早防范,快速处理,将损失降到最低。针对以上需求建立基于智能视频分析的危化品车辆流量、类别监控识别与统计分析系统,采用智能监控和态势感知等建立了多层次、全方位预警决策和风险管控平台。平台功能涉及车辆流量、类别识别、统计分析技术和预警功能,能辨识经过跨渠桥梁的车辆,特别是能对危化品运输车辆出入桥梁的信息进行记录和流量统计,对车辆偏离车道、异常停车、翻车、冲入渠道等异常事件能第一时间进行信息报告与自动预警。该项目已付诸实施,为南水北调跨渠桥梁安全管控提供了新的技术防护手段。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号